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Abstract. In recent years there has been an increase in the development of 

different applications that rely on web browsers as their main interface to users 

and developers. This paper introduces a simple interface that allows inspecting 

and navigating Java and C# objects through any XML-aware web browser. The 

web browser interface also allows displaying and executing all the methods that 

belong to a specific Java or C# object that has been persisted on the system. The 

web browser interface is part of a framework for distributed object 

programming in Java and C#, called Web Objects in XML (WOX).  
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1 Introduction 

Recently, there has been an increase in the development of different applications that 

rely on web browsers as their main interface to users and developers. This paper in-

troduces a simple interface that allows inspecting and navigating Java and C# objects 

through any XML-aware web browser. The web browser interface also allows dis-

playing and executing all the methods that belong to a specific Java or C# object that 

has been persisted on the system. The web browser interface is simple to use.   

The web browser interface presented in this paper is part of a framework created 

for distributed object programming, called Web Objects in XML (WOX) [1], which 

allows building distributed systems; it uses XML as the representation for the objects 

and messages interchanged [2]; and provides both synchronous and asynchronous 

communication between clients and servers [3]. The WOX framework has special 

features; some of them taken from two paradigms used to construct distributed sys-

tems: the object-based paradigm and the web-based paradigm, where Java and C# 

objects can be persisted by distributed or local applications.  

The rest of the paper is organized as follows. Related work is presented in section 

2. An overview of the WOX framework is given in section 3. Section 4 describes how 

to inspect objects through the web browser interface. Section 5 provides an explana-

tion on how to execute methods on specific objects that have been persisted on the 
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system. Section 6 discusses how to navigate objects through the web browser inter-

face. Finally, conclusions and future work are provided in section 7. 

2 Related Work 

This section describes some related work used to browse objects. Although there 

are existing tools to browse objects, none of them is incorporated to a framework for 

distributed object programming, such as the one presented in this paper.  

The Portable Explorer of Structured Objects (PESTO) [4], is an integrated user in-

terface that supports browsing and querying of object databases. It allows users to 

navigate in a hypertext-like fashion, following the relationships that exist among ob-

jects. In addition, PESTO allows users to formulate object queries through an inte-

grated query paradigm that presents querying as a natural extension of browsing, call 

it query-in-place. This interface can be configured to different object databases. 

In [5] the authors propose an interactional operator dedicated to navigation 

through time, which would allow visualizing a snapshot of a collection of objects at a 

given instant, or detecting and examining changes within object states. They also 

study how this operator can be integrated with the two main types of interactions  

given in visual object database browsers: navigation within a collection of objects, 

and navigation between objects via their relationships, where users can explore and 

navigate the states of a set of related objects. 

The authors of [6] worked more on the definition of a language rather than the de-

velopment of a tool for navigation. They created XQBE (XQuery By Example), a 

visual query language for expressing a large subset of XQuery in a visual form, in-

spired by QBE, a relational language initially proposed as an alternative to SQL, 

which is supported by Microsoft Access. According to the hierarchical nature of 

XML, XQBE's main graphical elements are trees. One or more trees denote the doc-

uments assumed as query input, and one tree denotes the document produced by the 

query. Similar to QBE, trees are annotated so as to express selection predicates, joins, 

and the passing of information from the input trees to the output tree. 

SOPView+ [7] is an object browser that supports navigation of a large database by 

changing the base object. The base object is an object which is a basis for navigation; 

forward navigation is provided for the reference paths ahead of the base object and 

backward navigation for the ones behind it. SOPView+ allows users to change the 

base object along the reference hierarchy among a number of database objects; this 

makes it possible for them to explore a large database until they find objects of their 

interest on the limited screen space, solving the screen real estate problem.  

The CORBA Object Browser [8] is a web browser that can be used to directly in-

voke methods on CORBA Objects using a specifically designed URI scheme. The 

URI for an object not only identifies the object but may also optionally include the 

name of the method to be invoked on the object and the parameters required. It has 

been implemented by extending the HotJava browser. The browser has a mechanism 

for supporting access to CORBA Objects that run on a secure ORB through the 
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CORBA Object Browser. Accessing secure objects through the browser requires the 

authentication with the remote ORB and may also need secure communication. 

3 Web Objects in XML 

This section provides a brief overview of the WOX framework, which combines fea-

tures of distributed object-based systems and distributed web-based systems. Some of 

the features of this framework are presented in the following paragraphs.  

WOX uses URLs to identify uniquely remote objects, following the principles of 

the Representational State Transfer [9]. This is an important feature because all ob-

jects are uniquely identified by their URL and can be accessed anywhere on the Web, 

either through a Web browser or programmatically. 

This framework uses an efficient and easy-to-use serializer, called the WOX 

serializer [2], which is the base of the framework to serialize objects, requests, and 

responses exchanged between clients and servers. This serializer is a stand-alone li-

brary based on XML, which is able to serialize Java and C# objects to XML and back 

again. One of its main features is the generation of standard XML for objects, which 

is language independent and allows reaching interoperability between different ob-

ject-oriented programming languages. At the moment, applications written in the Java 

and C# programming languages can interoperate. 

WOX has a set of standard and special operations supported on remote and local 

objects. These operations include the request for remote references, static method 

invocations (web service calls), instance method invocations, destruction of objects, 

request for copies, duplication of objects, update of objects, upload of objects, and 

asynchronous method invocations. Some of the operations are described in [1]. The 

mechanism used by WOX in a method invocation is shown in Figure 1. 

 

Fig. 1. A method invocation in WOX. 

 The detailed steps carried out in a method invocation in WOX are the following: 

1) The WOX client program invokes a method on a remote reference (the way in 

which the client invokes a method on a remote reference is exactly the same as that on 

a local object, as far as the client program is concerned); 2) The WOX dynamic proxy 

takes the request, serializes it to XML, and sends it through the network to the WOX 

server; 3) The WOX server takes the request and de-serializes it to a WOX object; 4) 
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The WOX server loads the object and executes the method on it; 5) The result of the 

method invocation is returned to the WOX server; 6) The WOX server serializes the 

result to XML and either the real result or a reference to it is sent back to the client. 

The result is saved in the server in case a reference is sent back; 7) The WOX dynam-

ic proxy receives the result and de-serializes it to the appropriate object (real object or 

remote reference); 8) The WOX dynamic proxy returns the result to the WOX client 

program.  

From the WOX client program’s point of view it just makes the method invoca-

tion and gets the result back in a transparent way. The WOX client libraries carry out 

the process of serializing the request and sending it to the WOX server; as well as 

receiving the result of the method invocation and de-serializing it. 

The following sections introduce the web browser interface, which allows the in-

spection of objects through an XML-aware web browser, the execution of methods on 

objects, and the visualization of them with three different modes of operation: xml, 

html, and image. It can also navigate remote objects, which allows a client program 

retrieving child objects of a given root object, through their XML representation. 

4 Inspecting Objects 

Every Java or C# object that is persisted in the system, it is represented in XML, and 

can be inspected through a web browser by typing the URL that is assigned to it au-

tomatically by the system. Figure 2 shows a web browser with an example of the 

XML representation for an object of the Lecturer class. In order to inspect an object, 

the user types the object URL in the address bar of a web browser; for example: 

http://carlosj:8080/WOXServer/WOXObject.jsp?id=622058786, which is a URL 

representing an object with id=622058786 on the system, which corresponds to an 

instance of the Lecturer class.  

 

 

Fig. 2. Inspecting a Lecturer object through a web browser. 

The XML representation of the Lecturer object is easy to understand, clean and 

compact. Every object is represented by an object XML element; and every field of an 

object is represented by a field XML element, with name, type and value attributes. 

The Lecturer object in Figure 1 has five attributes: firstName with string type; 
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lastName with string type; employeeNumber with int type; salary with double type; 

and department with string type. Figure 3 illustrates a diagram with the Lecturer class 

and an instance of it, which is represented in XML previously. 

 

 

Fig. 3. The Lecturer class and an instance of it. 

Alternatively, objects can be inspected through the server database, which holds 

all the objects that have been persisted on the system. Figure 4 shows an example of a 

server database, which can be accessed through the following URL: 

http://carlosj:8080/WOXServer/WOXObjects.jsp. 

 

 

Fig. 4. A server database showing the objects persisted on the system. 

The server database provides a table with three columns: the first column shows 

the URL of the object; the second column provides its implementation class; and the 

third column shows two hyperlinks. The View Object hyperlink can be used to request 

the specific object through its URL, and shows its XML representation on the web 

browser, as it was illustrated in Figure 1. The View Methods hyperlink is used to show 

the web browser interface with all the possible methods that can be invoked on the 

specific object. The invocation of methods is discussed in the following section. 

The server database is an interface provided by the system, which allows access to 

persisted objects. This database can be seen as a directory for all the persisted objects, 
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where the user can request the object to inspect its XML representation or execute any 

of its methods available through the web browser interface. 

5 Invoking Methods on Objects 

Since every object can be identified uniquely through its URL, it is also possible to 

invoke methods on persistent objects through a web browser. As an example, the 

URL below shows an invocation of the getDepartment method, on an object of the 

Lecturer class, identified by the 622058786 object id: http://carlosj:8080/WOXServer/ 

WOXInvoke.jsp?objectId=622058786&method=getDepartment. 

The result of the method invocation is returned to the web browser as XML, 

which is the default mode of operation for the system, but it can also be returned as 

HTML (by specifying mode=html in the query string), in which case only the string 

would be returned. There is a special case in which the system can also return an im-

age (by specifying mode=image in the query string), when the return type of a method 

is an array of bytes that represents an image. 

Using a web browser, the system is also capable of invoking methods with param-

eters of primitive data types, but not with parameters of other data types, like user-

defined classes. This way of operation through the web browser is similar to the way 

in which Apache Axis [10] allows invoking methods of classes. The main differences 

are that Axis, which is SOAP based [11], does not have the concept of an object, thus 

the methods are invoked as if they were static methods. Another important difference 

in this mode of operation is that Axis does not support package-qualified classes. In 

this respect, the system enables the invocation of methods on any web object (in-

stance methods), and methods of any package-qualified class (static methods). 

Alternatively, the system provides the browser interface with all the possible 

methods to invoke on a specific web object. This is similar to the browser front end 

for CORBA objects described in [8]. The web browser interface of the system can be 

accessed by typing the URL presented below, where it will present all the methods 

available for invocation on that object (in our example, it is a Lecturer object): 

http://carlosj:8080/WOXServer/WOXInvoke.jsp?objectId=622058786. Figure 5 

shows this browser interface with three of the methods available for a Lecturer object. 

The web browser interface can also be accessed from the server database shown in 

Figure 4, by clicking the View Methods hyperlink of the desired object. 

When clicking the Invoke Method button of the desired method, a query string is 

built internally with all the information needed for the method invocation. The request 

is sent to the system; the system will execute the method requested and generate an 

answer via an XML message with the result of the method invocation chosen; and 

finally this answer will be returned to the web browser (the return type of the method 

invocation is also specified in the web browser interface). The process of executing 

the method on the desired object is transparent to the user, since it is only needed to 

click the Invoke Method button to request the execution of the specific method, and 

wait for the answer. 
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Fig. 5. Some methods available for a Lecturer object. 

When the method to be invoked takes some parameters, the web browser interface 

provides the appropriate input boxes to enter the values to be sent with the method 

invocation. Figure 6 shows some other methods of a Lecturer object, which takes 

some parameters. It should be noticed that the input boxes shown in the web browser 

interface are generated automatically by the system, according to the data types of the 

parameters. Also notice that every parameter is named according to the order in which 

they appear in the method signature: param1, param2, etc. 

In order to invoke the setDepartment method shown in Figure 6, the user must 

provide the param1 parameter in the input box shown, which is of type string. When 

clicking the Invoke Method button of the setDepartment method, a query string is 

built with all the information needed for the method invocation on the specific object, 

which is the following: http://carlosj:8080/WOXServer/WOXInvoke.jsp?objectId= 

622058786&method=getDepartment&param1=Finance. 

The web browser interface provided by the system is a very convenient way of 

discovering and invoking methods on specific objects without needing a Java or C# 

client program.  

6 Navigating Objects 

The navigation of objects in the system allows a client program retrieving child 

objects of a persisted object. This is an important feature of this framework, which is 

very useful to retrieve only the child objects needed, instead of the entire object. This 

can also be carried out through a web browser. In this section we will use a different 
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object, since we want to show how to retrieve and navigate through an object which 

has child objects. 

 

 

Fig. 6. Some methods with parameters available for a Lecturer object. 

6.1 Retrieving an Object 

This subsection shows how to retrieve an object. Assuming that the object to be 

retrieved can be accessed through the following URL: 

http://carlosj:8080/WOXServer/WOXObject.jsp?objectId=622058786. The XML 

representation of the object retrieved, which is a list of Course objects, is shown in 

Figure 7. It can be observed that the root object has three child objects identified by 

their id attributes with values 1, 2, and 3. The root object is identified by the id attrib-

ute with the value of 0. 

6.2 Navigating an Object 

The inner or child objects of a root object can be retrieved independently by speci-

fying its id attribute in the URL of the specific object. For example, the following 

URL retrieves the Course object identified by id="1": 

http://carlosj:8080/WOXServer/WOXObject.jsp?objectId=622058786&id=1. 

The XML representation of the Course object after it has been retrieved is shown 

in Figure 8. It can be observed that only the child object specified has been retrieved. 

This is accomplished partly because of the XML representation of the objects, by 

using identifiers for every child object.  
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<object type="list" elementType="Object" length="3" id="0"> 

   <object type="Course" id="1"> 

      <field name="code" type="int" value="6756" /> 

      <field name="name" type="string" value="XML Technologies" /> 

      <field name="term" type="int" value="3" /> 

   </object> 

   <object type="Course" id="2"> 

      <field name="code" type="int" value="9865" /> 

      <field name="name" type="string" value="O-O Programming" /> 

      <field name="term" type="int" value="2" /> 

   </object> 

   <object type="Course" id="3"> 

      <field name="code" type="int" value="1134" /> 

      <field name="name" type="string" value="Web Programming" /> 

      <field name="term" type="int" value="2" /> 

   </object> 

</object> 

Fig. 7. XML representation of a list of Course objects. 

Using this important feature, it is possible to retrieve only parts of a persisted ob-

ject. This feature can be used through an XML-aware web browser where the object 

can be seen, but it can also be used programmatically from a Java or C# client appli-

cation, using the framework for distributed object programming. 

 

<object type="Course" id="1"> 

   <field name="code" type="int" value="6756" /> 

   <field name="name" type="string" value="XML Technologies" /> 

   <field name="term" type="int" value="3" /> 

</object> 

Fig. 8. XML representation of a list of Course objects. 

7 Conclusions and Future Work 

This paper presented a simple web browser interface to inspect, navigate and invoke 

methods on Java and C# objects, which are persisted in the system. The web browser 

interface is part of Web Objects in XML (WOX), an interoperable framework for 

distributed object programming. It has been shown how objects can be inspected 

through a web browser; how to discover the methods to be invoked on them; and 

finally, how to navigate through objects in order to retrieve specific child objects. One 

of the key advantages of the web browser interface is that a user can inspect, navigate 

and execute methods on objects though any XML-aware web browser without need-

ing any Java or C# program. The interface is intuitive and easy to use.  
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Further work is needed in order to allow the invocation of methods with parame-

ters representing objects of user-defined classes, because at the moment parameters of 

methods can only be of primitive data types. Additional work is needed in this respect 

to provide an interface to upload this type of parameters. The fact of representing 

objects in XML is a great advantage, since they can be stored in simple XML files, 

which facilitates their management. 
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