A Simple Web Interface for Inspecting, Navigating, and
Invoking Methods on Java and C# Objects

Carlos R. Jaimez-Gonzalez

Departamento de Tecnologias de la Informacion,
Universidad Auténoma Metropolitana, Unidad Cuajimalpa,
Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05300, México, D.F.
cjaimez@correo.cua.uam.mx

Abstract. In recent years there has been an increase in the development of
different applications that rely on web browsers as their main interface to users
and developers. This paper introduces a simple interface that allows inspecting
and navigating Java and C# objects through any XML-aware web browser. The
web browser interface also allows displaying and executing all the methods that
belong to a specific Java or C# object that has been persisted on the system. The
web browser interface is part of a framework for distributed object
programming in Java and C#, called Web Objects in XML (WOX).

Keywords. Web Browser Interface, Java Objects, C# Objects, Object Naviga-
tion, Method Invocation, Web Objects in XML.

1 Introduction

Recently, there has been an increase in the development of different applications that
rely on web browsers as their main interface to users and developers. This paper in-
troduces a simple interface that allows inspecting and navigating Java and C# objects
through any XML-aware web browser. The web browser interface also allows dis-
playing and executing all the methods that belong to a specific Java or C# object that
has been persisted on the system. The web browser interface is simple to use.

The web browser interface presented in this paper is part of a framework created
for distributed object programming, called Web Objects in XML (WOX) [1], which
allows building distributed systems; it uses XML as the representation for the objects
and messages interchanged [2]; and provides both synchronous and asynchronous
communication between clients and servers [3]. The WOX framework has special
features; some of them taken from two paradigms used to construct distributed sys-
tems: the object-based paradigm and the web-based paradigm, where Java and C#
objects can be persisted by distributed or local applications.

The rest of the paper is organized as follows. Related work is presented in section
2. An overview of the WOX framework is given in section 3. Section 4 describes how
to inspect objects through the web browser interface. Section 5 provides an explana-
tion on how to execute methods on specific objects that have been persisted on the

©L. Berthet, J. C. Chimal, E. A. Santos, E. Castillo
Advances in Computer Science
Research in computing Science 81, 2014 pp. 133-143

Carlos R. Jaimez-Gonzalez

system. Section 6 discusses how to navigate objects through the web browser inter-
face. Finally, conclusions and future work are provided in section 7.

2 Related Work

This section describes some related work used to browse objects. Although there
are existing tools to browse objects, none of them is incorporated to a framework for
distributed object programming, such as the one presented in this paper.

The Portable Explorer of Structured Objects (PESTO) [4], is an integrated user in-
terface that supports browsing and querying of object databases. It allows users to
navigate in a hypertext-like fashion, following the relationships that exist among ob-
jects. In addition, PESTO allows users to formulate object queries through an inte-
grated query paradigm that presents querying as a natural extension of browsing, call
it query-in-place. This interface can be configured to different object databases.

In [5] the authors propose an interactional operator dedicated to navigation
through time, which would allow visualizing a snapshot of a collection of objects at a
given instant, or detecting and examining changes within object states. They also
study how this operator can be integrated with the two main types of interactions
given in visual object database browsers: navigation within a collection of objects,
and navigation between objects via their relationships, where users can explore and
navigate the states of a set of related objects.

The authors of [6] worked more on the definition of a language rather than the de-
velopment of a tool for navigation. They created XQBE (XQuery By Example), a
visual query language for expressing a large subset of XQuery in a visual form, in-
spired by QBE, a relational language initially proposed as an alternative to SQL,
which is supported by Microsoft Access. According to the hierarchical nature of
XML, XQBE's main graphical elements are trees. One or more trees denote the doc-
uments assumed as query input, and one tree denotes the document produced by the
query. Similar to QBE, trees are annotated so as to express selection predicates, joins,
and the passing of information from the input trees to the output tree.

SOPView+ [7] is an object browser that supports navigation of a large database by
changing the base object. The base object is an object which is a basis for navigation;
forward navigation is provided for the reference paths ahead of the base object and
backward navigation for the ones behind it. SOPView+ allows users to change the
base object along the reference hierarchy among a number of database objects; this
makes it possible for them to explore a large database until they find objects of their
interest on the limited screen space, solving the screen real estate problem.

The CORBA Object Browser [8] is a web browser that can be used to directly in-
voke methods on CORBA Objects using a specifically designed URI scheme. The
URI for an object not only identifies the object but may also optionally include the
name of the method to be invoked on the object and the parameters required. It has
been implemented by extending the HotJava browser. The browser has a mechanism
for supporting access to CORBA Objects that run on a secure ORB through the

Research in Computing Science (81) 201434

A Simple Web Interface for Inspecting, Navigating...

CORBA Object Browser. Accessing secure objects through the browser requires the
authentication with the remote ORB and may also need secure communication.

3 Web Objects in XML

This section provides a brief overview of the WOX framework, which combines fea-
tures of distributed object-based systems and distributed web-based systems. Some of
the features of this framework are presented in the following paragraphs.

WOX uses URLs to identify uniquely remote objects, following the principles of
the Representational State Transfer [9]. This is an important feature because all ob-
jects are uniquely identified by their URL and can be accessed anywhere on the Web,
either through a Web browser or programmatically.

This framework uses an efficient and easy-to-use serializer, called the WOX
serializer [2], which is the base of the framework to serialize objects, requests, and
responses exchanged between clients and servers. This serializer is a stand-alone li-
brary based on XML, which is able to serialize Java and C# objects to XML and back
again. One of its main features is the generation of standard XML for objects, which
is language independent and allows reaching interoperability between different ob-
ject-oriented programming languages. At the moment, applications written in the Java
and C# programming languages can interoperate.

WOX has a set of standard and special operations supported on remote and local
objects. These operations include the request for remote references, static method
invocations (web service calls), instance method invocations, destruction of objects,
request for copies, duplication of objects, update of objects, upload of objects, and
asynchronous method invocations. Some of the operations are described in [1]. The
mechanism used by WOX in a method invocation is shown in Figure 1.

Internet

4 s (=)
/) 3 @
Method Serialize De-serialize to Actual method
invocation to XML WOX object invocation
Client | Dynamic Tl WOX Web
program | o Proxy server object
Return De-serialize Serialize Return
result result result to XML result
() @) (s)
(&) @ (&) ®)

Fig. 1. A method invocation in WOX.

The detailed steps carried out in a method invocation in WOX are the following:
1) The WOX client program invokes a method on a remote reference (the way in
which the client invokes a method on a remote reference is exactly the same as that on
a local object, as far as the client program is concerned); 2) The WOX dynamic proxy
takes the request, serializes it to XML, and sends it through the network to the WOX
server; 3) The WOX server takes the request and de-serializes it to a WOX object; 4)

135 Research in Computing Science (81) 2014

Carlos R. Jaimez-Gonzalez

The WOX server loads the object and executes the method on it; 5) The result of the
method invocation is returned to the WOX server; 6) The WOX server serializes the
result to XML and either the real result or a reference to it is sent back to the client.
The result is saved in the server in case a reference is sent back; 7) The WOX dynam-
ic proxy receives the result and de-serializes it to the appropriate object (real object or
remote reference); 8) The WOX dynamic proxy returns the result to the WOX client
program.

From the WOX client program’s point of view it just makes the method invoca-
tion and gets the result back in a transparent way. The WOX client libraries carry out
the process of serializing the request and sending it to the WOX server; as well as
receiving the result of the method invocation and de-serializing it.

The following sections introduce the web browser interface, which allows the in-
spection of objects through an XML-aware web browser, the execution of methods on
objects, and the visualization of them with three different modes of operation: xml,
html, and image. It can also navigate remote objects, which allows a client program
retrieving child objects of a given root object, through their XML representation.

4 Inspecting Objects

Every Java or C# object that is persisted in the system, it is represented in XML, and
can be inspected through a web browser by typing the URL that is assigned to it au-
tomatically by the system. Figure 2 shows a web browser with an example of the
XML representation for an object of the Lecturer class. In order to inspect an object,
the user types the object URL in the address bar of a web browser; for example:
http://carlosj:8080/WOXServer/WOXObject.jsp?id=622058786, which is a URL
representing an object with id=622058786 on the system, which corresponds to an
instance of the Lecturer class.

=l hﬂpw’(adusj‘BUBD/WQXSEWe[/WE(DkJJEct.'sp?id:EZZDSE?SE— Internet Eui\umrﬁrpyided b{ Dell ——— o o S|
K3\ = | nupuscanos;s00/wOxSever WOK CbjectjspTid=6 3 Googlc
Archivo Edicién Ver Favoritos Heramientas Ayuda
o Favoritos | <l @ Stios sugeridos = || Galeria de Web Siice =

i B s
(@ httpy//carlosj:B080/ WO XServer/WOXObject jspTid... Ep v BE) - 2 & v Piginav Seguridad v Herramientas v @+

- <object type="essex.Lecturer" id="0">
<fiald nama="firstName" type="string" value="Carlos" /=
<field name="lastName" type="string" value="Jaimez" />
=field name="employeeNumber" type="int" value="3356" />
=field name="salary" type="double" valu=="28000.89" />
=field name="department" type="string" value="Computer Science" />
</object>

Liste &P Internet | Mode protegide: activado B> Hi%n ~

Fig. 2. Inspecting a Lecturer object through a web browser.

The XML representation of the Lecturer object is easy to understand, clean and
compact. Every object is represented by an object XML element; and every field of an
object is represented by a field XML element, with name, type and value attributes.
The Lecturer object in Figure 1 has five attributes: firstName with string type;

Research in Computing Science (81) 201436

A Simple Web Interface for Inspecting, Navigating...

lastName with string type; employeeNumber with int type; salary with double type;
and department with string type. Figure 3 illustrates a diagram with the Lecturer class
and an instance of it, which is represented in XML previously.

essex.Lecturer essex.Lecturer: L1
- firstName: String firstName="Carlos"
- lastName: String lastName="Jaimez"
- employeeNumber: int employeeNumber=3356
- salary: double salary=28000.89
- department: String department="Computer Science"

Fig. 3. The Lecturer class and an instance of it.

Alternatively, objects can be inspected through the server database, which holds
all the objects that have been persisted on the system. Figure 4 shows an example of a
server database, which can be accessed through the following URL:
http://carlosj:8080/WOXServer/WOXObjects.jsp.

{8 WOX Server Database - Internet Explorer provided by Dell [[

@-_J = [8] httpy//localnost 8080/ WOXServer/ WOXObjects jop ~[@[+] | [*W oogee P -

Archivo Edicién Ver Favoritos Herramientes Ayuda

¢ Favoritos | 5 @ Sitios sugeridos = @] Galeris de Web Slice +

{& WOX Server Database % v B v é v Piginav Seguridad v Hemamientasv @v

Database for WOX Server located at:
http://carlosj:8080/WOXServer

Object URL Object Class

http://carlos):8080/WOXServer/WOXObject.jsp?id=1012744442 wox.examples.services.chartApp.LineChart
http://carlos]:B080/WOXServer/WOXCbject.jsp?id=1104617803 wox.examples.services.chartApp.LineChart
http://carlos]:B080/WOXServer/WOXObject.1sp?id=1228403002 wox.examples.services.chartApp.LineChartArrayList
http://carlosi:B0B0/WOXServer/WOXObject.isp?id=22328864 company.Manager

http://carl WOXServer/WOX0Object.jsp?id 409435 wox.examples.services.chartApp.LineChart
http://carlos):3080/WOXServer/WOXObject.Jsp?id=622058786 essex.Lecturer
http://carlosi:8080/WOXServer/WOXObject.jsp?id=76456399 waox.examples.services.chartApp.LineChart
http://carlosj:8080/WOXServer/WOX0Object.jsp?id=861762690 wox.examples.services.chartApp.LineChartArrayList
http://carlos):8080/WOXServer/WOXObject.jsp?id=097504428 wox.examples.services.chartApp.LineChart

Listo

€& Intranet local | Modo protegido: desactivado fa v WI00% ~

Fig. 4. A server database showing the objects persisted on the system.

The server database provides a table with three columns: the first column shows
the URL of the object; the second column provides its implementation class; and the
third column shows two hyperlinks. The View Object hyperlink can be used to request
the specific object through its URL, and shows its XML representation on the web
browser, as it was illustrated in Figure 1. The View Methods hyperlink is used to show
the web browser interface with all the possible methods that can be invoked on the
specific object. The invocation of methods is discussed in the following section.

The server database is an interface provided by the system, which allows access to
persisted objects. This database can be seen as a directory for all the persisted objects,

137 Research in Computing Science (81) 2014

Carlos R. Jaimez-Gonzalez

where the user can request the object to inspect its XML representation or execute any
of its methods available through the web browser interface.

5 Invoking Methods on Objects

Since every object can be identified uniquely through its URL, it is also possible to
invoke methods on persistent objects through a web browser. As an example, the
URL below shows an invocation of the getDepartment method, on an object of the
Lecturer class, identified by the 622058786 object id: http://carlosj:8080/WOXServer/
WOXInvoke.jsp?objectld=622058786 &method=getDepartment.

The result of the method invocation is returned to the web browser as XML,
which is the default mode of operation for the system, but it can also be returned as
HTML (by specifying mode=html in the query string), in which case only the string
would be returned. There is a special case in which the system can also return an im-
age (by specifying mode=image in the query string), when the return type of a method
is an array of bytes that represents an image.

Using a web browser, the system is also capable of invoking methods with param-
eters of primitive data types, but not with parameters of other data types, like user-
defined classes. This way of operation through the web browser is similar to the way
in which Apache Axis [10] allows invoking methods of classes. The main differences
are that Axis, which is SOAP based [11], does not have the concept of an object, thus
the methods are invoked as if they were static methods. Another important difference
in this mode of operation is that Axis does not support package-qualified classes. In
this respect, the system enables the invocation of methods on any web object (in-
stance methods), and methods of any package-qualified class (static methods).

Alternatively, the system provides the browser interface with all the possible
methods to invoke on a specific web object. This is similar to the browser front end
for CORBA objects described in [8]. The web browser interface of the system can be
accessed by typing the URL presented below, where it will present all the methods
available for invocation on that object (in our example, it is a Lecturer object):
http://carlosj:8080/WOXServer/WOXInvoke.jsp?objectld=622058786. Figure 5
shows this browser interface with three of the methods available for a Lecturer object.
The web browser interface can also be accessed from the server database shown in
Figure 4, by clicking the View Methods hyperlink of the desired object.

When clicking the Invoke Method button of the desired method, a query string is
built internally with all the information needed for the method invocation. The request
is sent to the system; the system will execute the method requested and generate an
answer via an XML message with the result of the method invocation chosen; and
finally this answer will be returned to the web browser (the return type of the method
invocation is also specified in the web browser interface). The process of executing
the method on the desired object is transparent to the user, since it is only needed to
click the Invoke Method button to request the execution of the specific method, and
wait for the answer.

Research in Computing Science (81) 201438

A Simple Web Interface for Inspecting, Navigating...

& Methods in object 622058786 of class essex.Lecturer - Internet Explarer provided by Dell =R
@@v | @] nttp nocamostaosn woxserver woxInvoke s - &[] x | [2 Googi= £~
Archivo Edicién Ver Favoritos Herramientas Ayuda

1 Favoritos iy @ s = @] Galeria de Web Slice =

(€ Methods in object 622058786 of class essex.Lectu.. % v 6] v = #® v Paginav Seguridadv Heramientas v v

Methods in object 622058786 of class essex.Lecturer

Method Name: getDepartment
Return Type: String

Mode: xml@ html

| Invoke Method |

Method Name: getEmployeeNumber
Return Type: nt
Mede: xml'® html

Method Name: getFirstName
Return Type: String

Mode: xml'@ html

|W\rwuke Method |

Listo €& Intranet local | Modo protegido: desactivado A v HI00% v

Fig. 5. Some methods available for a Lecturer object.

When the method to be invoked takes some parameters, the web browser interface
provides the appropriate input boxes to enter the values to be sent with the method
invocation. Figure 6 shows some other methods of a Lecturer object, which takes
some parameters. It should be noticed that the input boxes shown in the web browser
interface are generated automatically by the system, according to the data types of the
parameters. Also notice that every parameter is named according to the order in which
they appear in the method signature: paramli, param?2, etc.

In order to invoke the setDepartment method shown in Figure 6, the user must
provide the parami parameter in the input box shown, which is of type string. When
clicking the Invoke Method button of the setDepartment method, a query string is
built with all the information needed for the method invocation on the specific object,
which is the following: http.://carlosj:8080/WOXServer/WOXInvoke.jsp?objectld=
622058786 &method=getDepartment¶ml=Finance.

The web browser interface provided by the system is a very convenient way of
discovering and invoking methods on specific objects without needing a Java or C#
client program.

6 Navigating Objects

The navigation of objects in the system allows a client program retrieving child
objects of a persisted object. This is an important feature of this framework, which is
very useful to retrieve only the child objects needed, instead of the entire object. This
can also be carried out through a web browser. In this section we will use a different

139 Research in Computing Science (81) 2014

Carlos R. Jaimez-Gonzalez

object, since we want to show how to retrieve and navigate through an object which
has child objects.

T T
& Methods in object 622058786 of class essex.Lecturer - Internet Explorer provided by Dell \5@@
@@ ® [] http://localhost8080/WOXServer WOXInvoke jsplobjectld=622058786 v| = ‘ 0?‘ x | [28 Gooste £~
Archive Edicién Mer Favoritos Herramientas Ayuda

‘v Favoritos iz @8 Sitios sugendos v 2 Galerfa de Web cw

(& Methods in object 622058786 of class essexLectu... f4 ~ B v - #m v Piginav Sequridad~ Hemamientas~ @+

Method Name: getSalary
Return Type: double
Mode: xml'@ html
i

Method Name: setDepartment
Return Type: void
Parameters

param] : String

Mode: xml @ html

|7 Invoke Method |

Method Name: setEmployeeNumber
Return Type: void

Parameters

param] - int

Mode: xml@ html

)

Liste €& Intranet local | Modo protegide: desactivade a ~ R10% -

Fig. 6. Some methods with parameters available for a Lecturer object.

6.1 Retrieving an Object

This subsection shows how to retrieve an object. Assuming that the object to be
retrieved can be accessed through the following URL:
http://carlosj:8080/WOXServer/WOXObject.jsp?objectld=622058786. The XML
representation of the object retrieved, which is a list of Course objects, is shown in
Figure 7. It can be observed that the root object has three child objects identified by
their id attributes with values 1, 2, and 3. The root object is identified by the id attrib-
ute with the value of 0.

6.2 Navigating an Object

The inner or child objects of a root object can be retrieved independently by speci-
fying its id attribute in the URL of the specific object. For example, the following
URL retrieves the Course object identified by id="1":
http://carlosj:8080/WOXServer/WOXObject.jsp?objectld=622058786 &id=1.

The XML representation of the Course object after it has been retrieved is shown
in Figure 8. It can be observed that only the child object specified has been retrieved.
This is accomplished partly because of the XML representation of the objects, by
using identifiers for every child object.

Research in Computing Science (81) 201440

A Simple Web Interface for Inspecting, Navigating...

<object type="list" elementType="Object" length="3" id="0">
<object type="Course" id="1">
<field name="code" type="int" value="6756" />
<field name="name" type="string" value="XML Technologies" />
<field name="term" type="int" value="3" />
</object>
<object type="Course" id="2">
<field name="code" type="int" value="9865" />
<field name="name" type="string" value="0-O Programming" />
<field name="term" type="int" value="2" />
</object>
<object type="Course" id="3">
<field name="code" type="int" value="1134" />
<field name="name" type="string" value="Web Programming" />
<field name="term" type="int" value="2" />
</object>
</object>

Fig. 7. XML representation of a list of Course objects.

Using this important feature, it is possible to retrieve only parts of a persisted ob-
ject. This feature can be used through an XML-aware web browser where the object
can be seen, but it can also be used programmatically from a Java or C# client appli-
cation, using the framework for distributed object programming.

<object type="Course" id="1">
<field name="code" type="int" value="6756" />
<field name="name" type="string" value="XML Technologies" />
<field name="term" type="int" value="3" />

</object>

Fig. 8. XML representation of a list of Course objects.

7 Conclusions and Future Work

This paper presented a simple web browser interface to inspect, navigate and invoke
methods on Java and C# objects, which are persisted in the system. The web browser
interface is part of Web Objects in XML (WOX), an interoperable framework for
distributed object programming. It has been shown how objects can be inspected
through a web browser; how to discover the methods to be invoked on them; and
finally, how to navigate through objects in order to retrieve specific child objects. One
of the key advantages of the web browser interface is that a user can inspect, navigate
and execute methods on objects though any XML-aware web browser without need-
ing any Java or C# program. The interface is intuitive and easy to use.

141 Research in Computing Science (81) 2014

Carlos R. Jaimez-Gonzalez

Further work is needed in order to allow the invocation of methods with parame-

ters representing objects of user-defined classes, because at the moment parameters of
methods can only be of primitive data types. Additional work is needed in this respect
to provide an interface to upload this type of parameters. The fact of representing
objects in XML is a great advantage, since they can be stored in simple XML files,
which facilitates their management.

References

10.

. Jaimez-Gonzalez, C., and Lucas, S., Implementing a State-based Application Using Web

Objects in XML, In Proceedings of the 9th International Symposium on Distributed Ob-
jects, Middleware, and Applications (DOA 2007), Lecture Notes in Computer Science,
Volume 4803/2007, pp. 577-594, Vilamoura, Algarve, Portugal, 25-30 November 2007.

. Jaimez-Gonzalez, C., Lucas, S., and Lopez-Ornelas, E., Easy XML Serialization of C# and

Java Objects. In Proceedings of the Balisage: The Markup Conference 2011, Balisage Se-
ries on Markup Technologies, Volume 7 (2011), doi:10.4242/BalisageVol7.Jaimez01,
Montréal, Canada, 2-5 August 2011.

. Jaimez-Gonzalez, C., Lucas, S., and Luna-Ramirez, W., A Web Tool for Monitoring

HTTP Asynchronous Method Invocations, In Proceedings of the 7th IEEE International
Conference for Internet Technology and Secured Transactions (ICITST-2012), ISBN 978-
1-908320-08-7, pp. 127-132, London, UK, 10-12 December 2012.

. Carey, M., Haas, L., Maganty, V., Williams, J., PESTO: An Integrated Query/Browser for

Object Databases, In Proceedings of the 22th International Conference on Very Large Data
Bases, Mumbai, India, 3-6 September 1996.

. Dumas, M., Daasi, C., Fauvet, M., Nigay, L., Pointwise Temporal Object Database Brows-

ing, In Proceedings of the International Symposium on Objects and Databases, Sophia
Antipolis, France, June 2000.

. Braga, D., Capi, A., Ceri, S., XQBE (XQ uery B y E xample): A visual interface to the

standard XML query language, ACM Transactions on Database Systems, 01/2005;
30(2):398-443, 2005.

Chang, S., Kim, H., SOPView+: an object browser which supports navigating database by
changing base object, In Proceedings of the 21st International Conference on Computer
Software and Applications Conference (COMPSAC 97), 1997.

Gupta D. Kumar, A. and P. Jalote. A browser front end for corba objects. In 10th Interna-
tional World Wide Web Conference, 2001.

Fielding, R., Architectural Styles and the Design of Network-based Software Architec-
tures. Available at http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm, PhD thesis,
USA, 2000. Last accessed in September 2014.

Apache Software Foundation. Web services - axis. Available at: http://ws.apache.org/axis/.
Last access in September 2014.

. World Wide Web Consortium. Latest soap version. Available at:

http://www.w3.org/tr/soap/. Last access in September 2014.

Research in Computing Science (81) 201442

